Whole Genome Assembly and Alignment

Michael Schatz

Nov 20, 2013 CSHL Advanced Sequencing

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 2. Genome assemblers
 - I. ALLPATHS-LG
 - 2. SOAPdenovo
 - 3. Celera Assembler
- 3. Whole Genome Alignment with MUMmer
- 4. Assembly Tutorial

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
 - Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times, was the worst of times, wisdom, it was the age worst of times, it was

Greedy Reconstruction

```
It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

times, it was the worst

times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V,E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

- ... it was the best of times it was the worst of times ...
- ... it was the age of wisdom it was the age of foolishness ...
- ... it was the epoch of belief it was the epoch of incredulity ...
- ... it was the season of light it was the season of darkness ...
- ... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp
$$(300k+100k+45k+45k+30k = 520k >= 500kbp)$$

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Milestones in Genome Assembly

1977. Sanger et al.

1st Complete Organism
5375 bp

2000. Myers et al.

Ist Large WGS Assembly.

Celera Assembler. I 16 Mbp

1995. Fleischmann *et al.*1st Free Living Organism
TIGR Assembler. 1.8Mbp

2001. Venter et al., IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al. 1st Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

Novel genomes

Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

— ...

Why are genomes hard to assemble?

1. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

(Very) large genomes, imperfect sequencing

3. Computational:

(Very) Large genomes, complex structure

4. Accuracy:

(Very) Hard to assess correctness

Assembling a Genome

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Assembly Complexity

Assembly Complexity

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Illumina Sequencing by Synthesis

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Coverage

Typical contig coverage

Imagine raindrops on a sidewalk

Balls in Bins Ix

Balls in Bins Total balls: 1000

Histogram of balls in each bin Total balls: 2000 Empty bins: 142

Balls in Bins 2x

Balls in Bins Total balls: 2000

Histogram of balls in each bin Total balls: 4000 Empty bins: 17

Balls in Bins 4x

Balls in Bins Total balls: 4000

bin id

Balls in Bins 8x

10

balls in bin

15

20

Balls in Bins Total balls: 8000

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $1 \le k \le 6$ CACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ty I-copia, Ty 3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k}$$

$$A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!} e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k \ln 2$$

The fragment assembly string graph

Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (I-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC
 - Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
 - Place sequence to satisfy the mate constraints
 - Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called sequencing gaps
 - We know the order, orientation, and spacing,
 but just not the bases. Fill with Ns instead

Annotation

After assembly:

- Validation
- WGA
- BLAST
- CEGMA
- Gene Finding
- Repeat mask
- RNA-seq
- *-seq
- •
- Publish! ©

Break

Assembly Algorithms

ALLPATHS-LG

B(2) D(1) E(2) G(1)

Broad's assembler (Gnerre et al. 2011)

De bruijn graph
Short + PacBio (patching)

Easy to run if you have compatible libraries

http://www.broadinstitute.org/ software/allpaths-lg/blog/

SOAPdenovo

BGI's assembler (Li et al. 2010)

De bruijn graph Short reads

Most flexible, but requires a lot of tuning

http://soap.genomics.org.cn/ soapdenovo.html

Celera Assembler

JCVI's assembler (Miller et al. 2008)

Overlap graph

Medium + Long reads

Supports Illumina/454/PacBio Hybrid assemblies

http://wgs-assembler.sf.net

Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

^{*}See next slide.

**For best results. Normally not used for small genomes.

However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Error correction

Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':

But we don't have a crystal ball....

Error correction

<u>ALLPATHS-LG.</u> For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. (K=24)

columns inside the kmer are homogeneous

Two calls at Q20 or better are enough to protect a base

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Unipaths

Unipath: unbranched part of genome – squeeze together perfect repeats of size ≥ K

Adjacent unipaths overlap by K-1 bases

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number CN = 1)

II. Form neighborhood around each seed

read pairs reach into repeats

and are extended by other unipaths

Create assembly from global assembly graph

Large genome recipe: ALLPATHS-LG vs capillary

Genome assembly with SOAPdenovo

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 - Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) *Genome Biology.* 11:R116

Illumina Sequencing & Assembly

Quake Results 2x76bp @ 275bp 2x36bp @ 3400bp

Validated	51,243,281	88.5%
Corrected	2,763,380	4.8%
Trim Only	3,273,428	5.6%
Removed	606,251	1.0%

SOAPdenovo Results

	#≥ I00bp	N50 (bp)
Scaffolds	2,340	253,186
Contigs	2,782	56,374
Unitigs	4,151	20,772

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Single Molecule Sequencing Technology

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Error Correction: HGAP

- With 50-100x of Pacbio coverage, virtually all of the errors can be eliminated
 - Works well for Microbial genomes: single contig per chromosome routinely achieved
 - Difficult to scale up for use with eukaryotic genomes

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data Chin, CS et al. (2013) Nature Methods. 10: 563-569

Hybrid Sequencing

Illumina

Sequencing by Synthesis

High throughput (60Gbp/day)
High accuracy (~99%)
Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (IGbp/day)
Lower accuracy (~85%)
Long reads (5kbp+)

Hybrid Error Correction: PacBioToCA

http://wgs-assembler.sf.net

I. Correction Pipeline

- I. Map short reads to long reads
- 2. Trim long reads at coverage gaps
- 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

Enhanced PacBio Error Correction

PacBioToCA fails in complex regions

- I. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. Error Dense Regions Difficult to compute overlaps with many errors
- 3. Extreme GC Lacks Illumina Coverage

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2013) In preparation

Error Correction with pre-assembled Illumina reads

https://github.com/jgurtowski/pbtools

Short Reads -> Assemble Unitigs -> Align & Select - > Error Correct

Unitigs:

High quality contigs formed from unambiguous, unique overlaps of reads Each read is placed into a single unitig

Can Help us overcome:

- 1. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. Error Dense Regions Difficult to compute overlaps with many errors

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PBeCR Reads 19x @ 3500 ** MiSeq for correction	50,995
Enchanced PBeCR 19x @ 3500 ** MiSeq for correction	155,695

In collaboration with McCombie & Ware labs @ CSHL

Improved Gene Reconstruction

FOXP2 assembled in a single contig in the PacBio parrot assembly

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

Long Read CNV Analysis

Aluminum tolerance in maize is important for drought resistance and protecting against nutrient deficiencies

- Segregating population localized a QTL on a BAC, but unable to genotype with Illumina sequencing because of high repeat content and GC skew
- Long read PacBio sequencing corrected by CCS reads revealed a triplication of the ZnMATEI membrane transporter

A rare gene copy-number variant that contributes to maize aluminum tolerance and adaptation to acid soils

Maron, LG et al. (2013) PNAS doi: 10.1073/pnas.1220766110

P5-C3 Chemistry Read Lengths

De novo assembly of Arabidopsis

http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html

A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the latest P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin[™] device from Sage Science
- Total coverage > 100x

Genome size: 124.6 Mb

GC content: 33.92%

Raw data: II Gb

Assembly coverage: 15x over 9kbp

Sum of Contig Lengths: 149.5Mb

Number of Contigs: 1788

Max Contig Length: 12.4 Mb

N50 Contig Length: 8.4 Mb

Assembly Complexity of Long Reads

Assembly Summary

Assembly quality depends on

- 1. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical
 - Reads -> unitigs -> mates -> scaffolds
 - -> optical / physical / genetic maps
 - -> chromosomes
- Recommendations:
 - ALLPATH-LG for Illumina-only
 - HGAP for PacBio-only, CA for Hybrid assembly
 - See Assemblathon papers for a more extensive analysis

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy amp@umics.umd.edu

Goal of WGA

 For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

• Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
 - $-N \times M$ matrix
 - Let *i* = position in genome *A*
 - Let j = position in genome B
 - Fill cell (i,j) if A_i shows similarity to B_i

 A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

http://mummer.sf.net/manual/ AlignmentTypes.pdf

Seed-and-extend with MUMmer

How can quickly align two genomes?

- Find maximal-unique-matches (MUMs)
 - Match: exact match of a minimum length
 - Maximal: cannot be extended in either direction without a mismatch
 - Unique
 - occurs only once in both sequences (MUM)
 - occurs only once in a single sequence (MAM)
 - occurs one or more times in either sequence (MEM)

2. Cluster MUMs

using size, gap and distance parameters

3. Extend clusters

using modified Smith-Waterman algorithm

Seed and Extend

visualization

FIND all MUMs
CLUSTER consistent MUMs
EXTEND alignments

WGA example with nucmer

- Yersina pestis CO92 vs. Yersina pestis KIM
 - High nucleotide similarity, 99.86%
 - Two strains of the same species
 - Extensive genome shuffling
 - Global alignment will not work
 - Highly repetitive
 - Many local alignments

WGA Alignment

nucmer -maxmatch CO92.fasta KIM.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords

-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --large --layout out.delta.m

- --large Large plot
- --layout Nice layout for multi-fasta files
- --x11 Default, draw using x11 (--postscript, --png)
- *requires gnuplot

\					//
				. /	
			1	11	
	-	//			
	. /				
	/				
1.					1

References

- Documentation
 - http://mummer.sourceforge.net
 - » publication listing
 - http://mummer.sourceforge.net/manual
 - » documentation
 - http://mummer.sourceforge.net/examples
 - » walkthroughs
- Email
 - mummer-help@lists.sourceforge.net