Whole Genome Assembly and Alignment

 Michael SchatzNov 20, 2013
CSHL Advanced Sequencing

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Genome assemblers
I. ALLPATHS-LG
2. SOAPdenovo
3. Celera Assembler
3. Whole Genome Alignment with MUMmer
4. Assembly Tutorial

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was	t thessbldse be.simoestinite	wass and lweonstrof tintesses	it was the age of	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

Greedy Reconstruction

```
It was the best of
|was the best of times,
times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N 50 value

Example: I Mbp genome 50%

N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+45 k+45 k+30 k=520 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
${ }^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Why are genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Assembly Complexity

Assembly Complexity

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Amplify

4. Image

5. Basecall

Metzker (2010) Nature Reviews Genetics II:3I-46

Typical contig coverage

Imagine raindrops on a sidewalk

Balls in Bins Ix

Balls in Bins

Total balls: 1000

Balls in Bins $2 x$

Balls in Bins
bals in in
Total balls: 2000

Balls in Bins 4x

Balls in Bins
bals in in
Total balls: 4000

Balls in Bins $8 x$

Balls in Bins
Total balls: 8000

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
- Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
- Recommend I00x coverage

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:1165-II73.

Errors

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"
- Unitigs end because of (I) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat

$$
\operatorname{Pr}(X-\text { copy })=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k} \quad A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { cop } y)}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

> 2x100 @~10kbp (outies)

2x100 @ 300bp (innies)

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called
 sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

Annotation

After assembly:

- Validation
- WGA
- BLAST
- CEGMA
- Gene Finding
- Repeat mask
- RNA-seq
- *-seq
- Publish! :)

Break

Assembly Algorithms

ALLPATHS-LG	SOAPdenovo	Celera Assembler
Broad's assembler (Gnerre et al. 201 I)	 BGI's assembler (Li et al. 20IO)	 JCVI's assembler (Miller et al. 2008)
De bruijn graph Short + PacBio (patching)	De bruijn graph Short reads	Overlap graph Medium + Long reads
Easy to run if you have compatible libraries	Most flexible, but requires a lot of tuning	Supports Illumina/454/PacBio Hybrid assemblies
http://www.broadinstitute.org/ software/allpaths-Ig/blog/	http://soap.genomics.org.cn/ soapdenovo.htm	http://wgs-assembler.sf.net

Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

reads

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage ($\mathbf{(x)}$	Required
Fragment	180^{*}	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no $^{* *}$
Fosmid jump	40,000	≥ 26	1	no $^{* *}$

*See next slide.
**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Error correction

Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':

But we don't have a crystal ball....

Error correction

ALLPATHS-LG. For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. ($\mathrm{K}=24$)

columns inside the kmer are homogeneous
Two calls at Q20 or better are enough to protect a base

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Unipaths

Unipath: unbranched part of genome - squeeze together perfect repeats of size $\geq \mathrm{K}$

Adjacent unipaths overlap by K-1 bases

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number $\mathrm{CN}=1$)
II. Form neighborhood around each seed

and are extended by other unipaths

Create assembly from global assembly graph

Large genome recipe: ALLPATHS-LG vs capillary

Genome assembly with SOAPdenovo

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 140 GB RAM

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. I I:R I I6

Illumina Sequencing \& Assembly

Quake Results

Validated	$5 I, 243,28 I$	88.5%
Corrected	$2,763,380$	4.8%
Trim Only	$3,273,428$	5.6%
Removed	$606,25 I$	1.0%

SOAPdenovo Results

	$\# \geq 100 \mathrm{bp}$	N50 (bp)
Scaffolds	2,340	253,186
Contigs	2,782	56,374
Unitigs	4,151	20,772

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

I. Pre-overlap

- Consistency checks

2. Trimming

- Quality trimming \& partial overlaps

3. Compute Overlaps

- Find high quality overlaps

4. Error Correction

- Evaluate difference in context of overlapping reads

5. Unitigging

- Merge consistent reads

6. Scaffolding

- Bundle mates, Order \& Orient

7. Finalize Data

- Build final consensus sequences

Single Molecule Sequencing Technology

Oxford Nanopore

SMRT Sequencing Data

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG

TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
 A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
 ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG $|||||||||||||||||||||||||||||||||||||\mid$ ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment

PacBio Error Correction: HGAP

- With 50-100x of Pacbio coverage, virtually all of the errors can be eliminated
- Works well for Microbial genomes: single contig per chromosome routinely achieved
- Difficult to scale up for use with eukaryotic genomes

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data Chin, CS et al. (2013) Nature Methods. 10: 563-569

Hybrid Sequencing

Illumina
Sequencing by Synthesis
High throughput (60Gbp/day) High accuracy (~99\%)
Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing
Lower throughput (IGbp/day)
Lower accuracy (~85\%)
Long reads (5kbp+)

Hybrid Error Correction: PacBioToCA
 http://wgs-assembler.sf.net

I. Correction Pipeline
I. Map short reads to long reads
2. Trim long reads at coverage gaps
3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:IO.I038/nbt. 2280

Enhanced PacBio Error Correction

PacBioToCA fails in complex regions

I. Simple Repeats - Kmer Frequency Too High to Seed Overlaps
2. Error Dense Regions - Difficult to compute overlaps with many errors
3. Extreme GC - Lacks Illumina Coverage

Assembly complexity of long read sequencing
Lee, H^{*}, Gurtowski, J*, Yoo, S, Marcus, S, McCombie,WR, Schatz MC et al. (2013) In preparation

Error Correction with pre-assembled Illumina reads

 https://github.com/jgurtowski/pbtools

Short Reads -> Assemble Unitigs -> Align \& Select -> Error Correct
Unitigs:
High quality contigs formed from unambiguous, unique overlaps of reads
Each read is placed into a single unitig
Can Help us overcome:

1. Simple Repeats - Kmer Frequency Too High to Seed Overlaps
2. Error Dense Regions - Difficult to compute overlaps with many errors

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments $50 \times 2 \times 100 \mathrm{bp}$ @ 180	3,925
MiSeq Fragments $23 \times 459 b \mathrm{~b}$ $8 \times 2 \times 25 \mathrm{lbp}$ @ 450	6,332
"ALLPATHS-recipe" $50 \times 2 \times 100 \mathrm{bp}$ @ 180 $36 \times 2 \times 50 \mathrm{~b}$ $51 \times 2 \times 50 \mathrm{bp}$ @ 4800	18,248
PBeCR Reads I9x @ 3500 ** MiSeq for correction	50,995
Enchanced PBeCR $19 \times$ @ 3500 ** MiSeq for correction	$\mathrm{I} 55,695$

In collaboration with McCombie \& Ware labs @ CSHL

Improved Gene Reconstruction

FOXP2 assembled in a single contig in the PacBio parrot assembly

	200 kb				taeGut1
	25400000	25500000	2560000 d	2570000 d	

454-PBcR-Illumina

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (20I2) Nature Biotechnology. doi: I0.IO38/nbt. 2280

Long Read CNV Analysis

Aluminum tolerance in maize is important for drought resistance and protecting against nutrient deficiencies

- Segregating population localized a QTL on a BAC, but unable to genotype with Illumina sequencing because of high repeat content and GC skew
- Long read PacBio sequencing corrected by CCS reads revealed a triplication of the ZnMATEI membrane transporter

A rare gene copy-number variant that contributes to maize aluminum tolerance and adaptation to acid soils
Maron, LG et al. (2013) PNAS doi: IO.IO73/pnas.I220766IIO

P5-C3 Chemistry Read Lengths

De novo assembly of Arabidopsis

http://blog.pacificbiosciences.com/20I3/08/new-data-release-arabidopsis-assembly.html

Genome size:
GC content:
Raw data: II Gb
Assembly coverage: $15 x$ over 9 kbp
A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the latest P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science
- Total coverage >100x

Sum of Contig Lengths:	I 49.5 Mb
Number of Contigs:	1788
Max Contig Length:	12.4 Mb
N50 Contig Length:	8.4 Mb

N50 Contig Length:
8.4 Mb

Assembly Complexity of Long Reads

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical
- Reads -> unitigs -> mates -> scaffolds
-> optical / physical / genetic maps
-> chromosomes
- Recommendations:
- ALLPATH-LG for lllumina-only
- HGAP for PacBio-only, CA for Hybrid assembly
- See Assemblathon papers for a more extensive analysis

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

Goal of WGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
$-N \times M$ matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell ((i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

Seed-and-extend with MUMmer

How can quickly align two genomes?

I. Find maximal-unique-matches (MUMs)

- Match: exact match of a minimum length
- Maximal: cannot be extended in either direction without a mismatch
- Unique
- occurs only once in both sequences (MUM)
- occurs only once in a single sequence (MAM)
- occurs one or more times in either sequence (MEM)

2. Cluster MUMs

- using size, gap and distance parameters

3. Extend clusters

- using modified Smith-Waterman algorithm

Seed and Extend visualization

FIND all MUMs

CLUSTER consistent MUMs
EXTEND alignments

WGA example with nucmer

- Yersina pestis CO92 vs. Yersina pestis KIM
- High nucleotide similarity, 99.86\%
- Two strains of the same species
- Extensive genome shuffling
- Global alignment will not work
- Highly repetitive
- Many local alignments

WGA Alignment

```
nucmer -maxmatch CO92.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)
delta-filter -m out.delta > out.filter.m
-m Many-to-many mapping
show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position
dnadiff out.delta.m
Construct catalog of sequence variations
mummerplot --large --layout out.delta.m
--large Large plot
--layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)
*requires gnuplot
```

x^{x}

References

- Documentation
- http://mummer.sourceforge.net
» publication listing
- http://mummer.sourceforge.net/manual
» documentation
- http://mummer.sourceforge.net/examples
» walkthroughs
- Email
- mummer-help@lists.sourceforge.net

